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ABSTRACT 

We consider extremal problems concerning transformations of the 
edges of complete hypergraphs. We estimate the order of the largest 
subhypergraph K such that for every edge e E € ( K ) ,  f (e)  e f ( K ) ,  assum- 
ing f (e)  # e. Several extensions and variations of this problem are also 
discussed here. 

INTRODUCTION 

In this paper we investigate some extremal problems concerning transforma- 
tions of the n-subsets of a set.' We begin with some technical definitions. 

For a set S, let IS1 denote its cardinality. For a graph G, let V ( G )  [respec- 
tively, E ( G ) ]  denote the vertex set (respectively, edge set) of G, and let e(G)  = 
IE(G)I. Use 6(G) and A(G) to denote the minimum and maximum degree of 
the vertices of G, respectively. For u E V ( G ) ,  let deg u denote its degree. For 
the complete graph on m vertices K,, we sometimes use Em for E(K,) .  Let 
ISI" denote the set of all n-subsets of S, and if IS1 = p ,  write K i  for [S]". The 
complete q-partite graph with all color classes of size p is denoted by K,(p) .  
Finally, Aut G denotes the automorphism group of the graph G. 

Letf:[S]" + [S]. The order o f f i s  
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Let F ( m , t i , d )  = {f:[Sl" -, [SI"Id(f) 
,f: [ S ] "  --$ IS J", say that A is,f-fr.re if for all n E A ,  f ( o )  e A .  Define 

d ,  IS1 = m}. For A C IS ] " ,  and 

g ( p .  1 1 ,  d )  max{m I thcre isf E F ( m ,  1 2 ,  d )  with no copy of Kgl-frcc} 

(Note that g ( p .  1 1 ,  d )  is well defincd for p 2 211 - d.)  Let 

g(G, d )  max{m I there is ,f E F(m.  2. d )  with no copy of G,f-free} . 

and only consider cases where this exists. 
Define 

H(m,  n , d )  = { S : E ( K , , ( m ) )  -+ E ( K , , ( m ) )  Id(f) = d E {O. l}}, 

and let 

B(rn, ti, d )  =- max{r I there is J E H ( f ,  1 1 .  d )  with no copy of K,(rn) f-free} 

In this paper we investigate the behavior of the functions g ( p ,  n, d ) ,  g(G. d) .  

We determine lower and upper bounds for each of those functions, and wc 

Along this paper we make an intensive use of some versions of the cele- 

We also use implicitly the standard inequalities concerning and 

and B(m,  n, d )  in great generality. 

also obtain some exact results in some small cases. 

brated Konig-Hall theorem. [See, c.g. ,  13, pp. 50-581.) 

( 1  - (m/n ) ) ' .  (See, e.g., 13, p. 2551.) 

Motivation 

The origin of the subject of set mappings can be traccd back to 1930 when 
some problems concerning set mappings and free sets. most of them coming 
from topology and set iheory, werc treated mostly by Polish and Hungarian 
mathematicians. 

The subject was dormant until 1958 when Erd6s and Hajnal published their 
almost forgotten paper "On the Structure of Set Mappings" 191. 

In this fundamental work, they gave many results concerning the modifi- 
cation of g( p ,  n.  d )  to the infinite case. They also gave some initial results on 
g(p, n, 4. 

In the last few years, more work has been done. The book of Erdos er al. 
[lo] summarizes the known results on the infinite case. The work of Alon, 
Caro. and Schonheim 1 1 ,  11, 121 shows that thc finite case is no less interesting. 

The first part of the current paper is devoted to both generalizing and 
improving the results obtained so far by Alon and Caro 11 J and Erdos and 
Hajnal (91. In the second and third parts we present some.further generali- 
zations and variations of the original questions. both for their own interest and 
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because they show that our methods have a wide range of applications. It is 
also of interest to notice here that many classical theorems and methods of 
graph theory such as the Konig-Hall theorem, the ErdGs-Stone thcorem. the 
Kanisey theorem, and the Turan theorem, as well as counting methods and the 
probabilistic method, have an elegant and efficient application in the frame of 
set mappings. 

1. THE FUNCTION g(p,n,d)  

In  this section we obtain some general results concerning the function 
g ( p , n . d ) .  Our first result is the following. 

Theorem 1.1 (upper bound). 
for all r 3 p 

Let g = g ( p .  17, d ) ,  p 3 2n - d,  17 > d; then 

/ = 0  3 n (g - I 1  - j )  
(r - p + l)n! 

/-,, 

Proof. Suppose f E F ( g ,  n ,  d )  is a function such that no copy of K; in K i  is 
f-free. Let T be the set of all ordered pairs ( e ,  K )  where K is a copy of K:’ in K;1 
and e is an edge of K ;  such that e , f ( e )  E E ( K ) ,  le n f(e)l d d. Every copy K 
of K: appears in at least r - p + I elements of T .  Indeed, suppose this is false 
and let K be a copy appearing in 4 S r - p elements of T ,  ( e , , K ) ,  1 4 i S 4 .  
For each 1 S i d 4 ,  let u, E e , .  Define V = V(K)\(u,, . . . ,u,<}.  Clearly, 
I V I > r - q ~ p > n .  

Let e E [V]” C [ V ( K ) ] ”  = E ( K ) .  Now, by the definition of V,f(e)  @ E ( K )  
(for otherwise, e,f(E) E E ( K ) ,  which implies e = e, for some 1 d j S q ,  
contradicting the fact that for 1 d .j S 4 ,  e, e [V]”). Therefore, every copy of 
Ka containing only vertices of V isf-free, contradicting the fact that there is 
no such copy. Hence, we conclude that IT1 3 ( ? ) ( r  - p + 1) .  On the other 
hand, if e is an edge of K;1 and ( e , K )  E T ,  then K contains all the vertices of 
e and f(e). But le U f(e)l 2 2n - d ,  hence e appears in at mosx (,::::/;) ele- 
ments of T ,  and thus 

17-1 6 (x) ( g  - I n  + d )  
r - 211 + d 

Combining the last two inequalities. we obtain ( I .  I ) .  

Remark. For given p, iz, d,  the bcst bound is obtained by taking 

r = m a x p ,  p - 2 +  { [ 2 n - d - 1  
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Theorem 1.2 (lower bound). For every p 
tive integer satisfying 

2n - d, n > d, if g is a posi- 

Proof. Let T C F ( g ,  n, d) be the set of all functionsfsuch that If(e)  fl el = d 
for all e E E(Kjd). We consider T as a probability space whose elements have 
equal probability. The probability that a given copy K of K; isf-free is 

Therefore, the expected number off-free copies of Ka in K ;  is just the left-hand 
side of (1.2), which is smaller than 1 .  This shows that there exists an f E T 
such that no copy of K i  in K i  isf-free and establishes the theorem. 

Remarks. 

n , d , n  > d, there exist constants cI = c l ( n , d ) ,  c2 = cz(n,cl) such that 
(1) An immediate consequence of Theorems 1 . 1  and 1.2 is that for a given 

hence limp,,(log g ( p ,  n, d)/log p )  = ( 2 n  - d - l ) / ( n  - d ) .  (See. e . g . ,  
13, p. 2553.) 

( 2 )  By an easy application of a theorem of Lovisz (sec [7, p. 791 we can 
replace the factor (j) in (1.2) by the factor e ( ( { )  (,,!,,) + l ) ,  which is better than 
the lower bound (1.2) for ti > d 3 2 and p large. However, this improvement 
is not strong enough to solve the following problem. 

Problem 1. Does there exist a constant c(n, d )  such that g ( p ,  n ,  d )  = c(n,  d )  . 
P' * ( 1  + 0(1)), t = (2n - d - I)/(n - d)? 

Our last result in this section is the following. 

Theorem 1.3. Let n 2 k 2 1,  then 

g(n + k,n,n - k )  = 2n + k .  
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Proof. Taking r = p ,  g = 2n + k ,  d = n - k in ( 1 .  I ) ,  we find that 
g ( n  + k , n , n  - k )  S 211 + k .  Assume I S  = 2n + k ,  then, of course, 
( 2 n , : k )  = (*:::). A simple application of the theorem of Hall and Konig (see 
18, p. 851) shows that there is a bijection h : [ S ] " +  such that u C h(u) 
for all u E [ S ] " .  It  is trivial to show that there is a function 9 :  [S]" + 
[S]"-' such that y(u) C u for all u E [S]". (if n - k = 0 ,  put q(u) = 0). De- 
fine the functionf: IS]"  + IS]" as follows: 

It is easy to see that no copy of K : : , k  in KY,l.k isf-free. 

2. THE FUNCTION g(G, d )  

In  this section we give some results concerning the function g(G, d ) .  We only 
outline the proofs of the results, which are straightforward generalizations of 
those of Section I .  Our first result is the following. 

Theorem 2.1 (lower bound). Let G be a graph. y = IE(G)I, p = IV(G)I. 
Denote by h(G) the number of copies of G in K p .  For every edge e E E(G)  
define d(e) = deg u + deg u - 2 where e = (u,u). 

If g is a positive integer satisfying 

then g(C, 1 )  2 g. 
If g is a positive integer satisfying 

Proof, Let T C F ( g ,  2 ,  1 )  be the set of all functions f such that If(e) n 
el = 1 for all e E QK,). Clearly, f ( e )  has 2g - 4 possibilities in K R ,  and if 
we consider a given copy of G in K ,  containing e ,  there are d(e)  possibilities 
that f ( e )  E E ( G ) .  Hence, the probability that a given copy of G is f-free is 
IIy-,(l - ( (d(e , ) ) / (2g  - 4))). Therefore, the expected number off-free copies 
of G in K ,  is the left-hand side of (2 .  l ) ,  and the result follows. The case d = 0 
can be proved along the same line with trivial modifications. 
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Remark. Obviously, h(G) = p!/(Aut GI where Aut G is the group of the 
automorphisms of G. In order to present an upper bound. we need some 
more definitions. Let G be a graph so that p = /V(G)I, r 3 p .  Define 
G, = G + K,-p (where + is the join operation). Define h(G,r) as the number 
of copies of G in K,. Define Ii,(G, r )  as the number of copies of G in K, con- 
taining a fixed copy of Kl,:. Define h2(G, r )  as the number of copies of G in K, 
containing a fixed copy of 2K:. 

Theorem 2 .2  (uppe r  b o u n d ) .  I f  g = g ( G ,  I ) ,  then for all  r B P ,  
P = IV(C)l. 

If g = g(G,O), then for all r 3 P, 

Remark. 
P vertices, then G C H ,  and this is a crucial point in the proof. 

It is important to notice that if H is any induced subgraph of G, on 

Proof. We prove only the first part. The second part is similar. Suppose 
f E F ( g ,  2 ,  1) is a function such that no copy of G in K,q isf-free. Let T be the 
set of all ordered pairs (e, K )  where K is a copy of G,. in K, and e is an edge of 
Kp such that e , f ( e )  E E(K), Ie fl f(e)l d 1. Every copy K of G, appears in at 
least r - P -1- I elements of T. Indeed, suppose this is false, and let K be a 
copy appearing i n  r d I‘ - P elements of T. ( e , ,  K ),  I S i S r .  For each 
1 d i =s t ,  let u, E e, be a vertex, and define V = V(K)\{uI,. . . ,u ,} .  Clearly, 
IVI 2 r - t 2 P.  Let e E [ V ] ‘  fl E ( K )  be an edge .  By the definition 
of V,f(e) e E ( K ) .  Therefore (recall the remark above), every copy of G con- 
taining only edges of [ V ] ’  fl E(K)  isf-free,  a contradiction. Hence. we 
conclude that 

IT1 3 h(G,..g)(r - P + 1 ) .  

On the other hand, if e is an edge of Kg and ( e ,  K )  E T, then K contains both 
e andf’(e). Clearly, e a n d j ( e )  can appear in two forms, a s  K ,  ( i . e . .  
f ( e )  fl e Z g) or as 2K2 (i.e..f(e) n e = 8); hence, P appears in at most max 
{h,(G,,g),h,(G,,g)}elementsof T, and thus 1TI S (!) max{h,(G,,K),h,(G~,g)}. 
Combining the last two inequalities, we obtain (2.3). 
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Remarks. 

( I )  Clearly, h(G, ,g)  = g ! / ( g  - r)!/Aut G,I. However, if in G ,  A ( G )  S 
P - 2 ,  then lAut G,I = lAut G l ( r  - P ) ! ,  which simplifies (2.3).  

( 2 )  Theorem 2.2 is useful for small graphs. For example, taking g = 5, 
r = 4 in Theorem 2.2 gives the bounds g(P4,0) 4,  g(P,, 1) S 4. (P4 is the 
path on four vertices.) Define a function . f : E ( K , )  + E ( K 4 )  as follows: 
f( 1 , 2 )  = ( 3 , 4 ) ,  f ( 2 , 3 )  = (1 ,4 ) ,  f( I ,  3)  = (2 ,4 ) ;  then we conclude that 
g ( P 4 , O )  = g(P4. 1) = 4. 

3. THE FUNCTION B(m,n,d) 

In this section we obtain some general results concerning the function 
B(m,  n, d ) .  We also prove some exact results, and we present an application of 
this function to estimate the correlation between I(m, H )  and ex(m, H )  (whose 
definitions are given later). Our first result is the following. 

Theorem 3.1 (lower bound). If t is a positive integer satisfying 

then B(m,n ,  1 )  b r .  

If t is a positive integer satisfying 

(3.1.1) 

then B(m,  n ,  0) 2 t .  

Proof. The proof is a simple modification of the proof of Theorems 1 .Z 
and 2. I ,  and we omit the details. 

Theorem 3.2 (upper boundj. 

r 2 ( r  - I )  

2(r  - r r l )  + I 
If r 3 m 3 2 ,  then B ( m , 2 .  1 )  S + I . (3.2.1) 
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r ( r  - 1) 
(2(r  - m )  + 1 1 ' ' ~  

If r 2 m 3 2 ,  then B ( m , 2 , 0 )  d + 1 .  (3.2.2) 

('1) . r j  

If r 3 m 3 I , !?  2 3 ,  then B(m,n ,  1) < . (3.2.3) 
2(r  - m )  + I 

- 1)  , J"* - 
I f  r 3 m 2 2 ,  then B 

2 
(3.2.4) 

Proof. We give a detailed proof of (3.2.3) as a typical case. The proof is a 
modification of the proof of Theorem 1.1.  

Le t  t = B ( m , n ,  1 )  and  a s sume  the  cond i t ion  of ( 3 . 2 . 3 ) .  Suppose  
f E H ( t . n ,  1) is a function such that no copy of K,,(m) in Kni t )  isf-free. Let T 
be the set of all ordered pairs (e, K )  where K is a copy of K,(r) in K,,(t) and e 
is an edge of K,,(t) such that e,f(e) E E ( K ) .  

Claim. 
of T. 

Every copy K of K,(r )  appears in at least 2(r - m )  + 1 elements 

Indeed, suppose this false, and let K be a copy appearing in 4 2(r - rn) 

For each 1 c i 6 q ,  let u, E e, be a vertex, but such that no more than 
r - m vertices be long  to the same color class in K n ( r ) .  Define V = 

v(K)\{u, ,  . * , u q } .  Clearly, IVI 3 n . r - q 2 nr - 2(r  - m )  = ( n  - 2 )  . 
( r  - m )  + nm, and by the definition of V, each color class of V has at least 
m vertices. 

Let e be an edge of the graph induced by V. Then (like in Theorem 1 . 1 )  
f ( e )  e E ( V ) .  Therefore, every copy of K,,(m) in V isf-free, a contradiction 
which proves our claim. So we conclude that 

elements of T, ( e , , K ) ,  1 G i d Y. 

On the other hand, a simple convexity argument shows that each edge e can 
appear in T at most 

times as a left member of T. 
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Hence, we obtain 

Combining ( 1 )  and ( 2 )  and after some algebra we obtain (3 .2 .3) .  Q.E.D. 

Remark. 
are obtained in two steps. 

In all cases of the theorem, the set T is defined and the inequalities 

Step A. 
all the different cases. 

Give a lower bound for T ;  it is what the claim does and it works in 

Step B. Give an upper bound for T, by counting the maximum number of 
times an edge can appear in T. For this step i t  is necessary to distinguish 
between the different cases. 

3.1 The Function / (m,H) 

For ni > 2, define 

lin1.H) = max{r I 3f: E,,, -+ E,.f(e) # e for r edges of En, and 
no copy of H in K,,, is f-free} . 

The Turan numbers ex(rn,H) = max{t I 

Theorem 5.4 of I I ] .  

3 G , e ( G )  = t ,  IG; = m.H G}. 
We use Theorem 3.2 together with a theorem of Erdos-Stone to strengthen 

Theorem 3.3. 
P - k + 1.  There exists a constant hl > 0 (depending only on k )  such that 

Let H be a graph. x (H)  = k 2 3, /Hi = P. and put I- = 

Proof. The left-hand side can be found in [ I ] .  Clearly, the largest color 
class of H contains at most r vertices, r = P - k + I .  Hence, If C K i ( r ) .  
Let G(rn ,n)  be a graph on m vertices and n edges such that n > ( m 2 / Z )  
(1 - ( l / ( k  - 1)) + E ) ,  ( l / k )  > E > 0. By an improved version of the Erdiis- 
Stone theorem (see, e.g., [3 ,  p.  3 2 8 ] ) ,  G contains a K A ( r ) ,  ( i )  t = (a  log rn)/  
( k  log I / & )  (a  is a constant depending only on k ) .  We choose ( i i )  t = C, . r' ,  
so that for every func t ionf :E(G)  - E ( G )  there exist K k ( C , r ' )  such that 
f(e) f e for every edge e of K k ( C l r 2 ) .  By Theorem 3.2 we conclude that G 
contains a k(r)$-free graph, and hence an H-f-free. Eliminating E froni (i), 
(ii), we get the final result. Q.E.D. 
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Remark. Observe that instead of working with H ,  whose structure is 
unknown, we are working with K k ( r )  and H C K k ( r ) .  Moreover, the choice of 
t = c , r z  is justified by Theorem 3.2. case (3.2.3). 

As a simple application of Thcorem 3.3,  we prove the following. 

Theorem 3.4. 
f : E ( K , , , )  -+ E(K,,,) contains a GTf-free. (G is a fixed graph.) Then 

Denote by P ( m , G )  the probability that a random function 

lim P(m, G )  = 1 
,"+X 

Proof. Let P ( m ,  n )  denote the probabili ty that a random function 
f : E ( K , , )  + E(K,,,) has at least IZ edges e, such that f(e,) r l  el # 0. We first 
prove that lim,,,P(m, l l m )  = 0 .  I n d e e d ,  t he  number  of func t ions  
f:E(K,,,) +E(K,,,) with exactly k edges e, such thatf(e,) fl e, # 0 is given by 

Hence, the number of functions having at least 2e(2m - 3 )  edges e, such that 
f (e l )  n el = 0 is 

Now 2 4 2 m  - 3 )  d l l m ;  hence, for m 2 20,  P(m,  l l m )  2-l"" , which is 
stronger than our original claim. The probability that a random function has 
at least ( y )  - l l m  edges e , ,  f(e,) n e, = 0, is therefore at least 1 - 2-'"''' 
(m 2 20). 

Now Theorem 3.3 implies that for rn k m,, ( y )  - l l m  > I(m,G); hence,f 
has a G-f-free, and we proved that for rn a m,, P(m,  G )  2 1 - P(m, I lm)  -+ 

1. Q.E.D. 

4. VARIATIONS 

In this final section, we consider only two major variations of the main sub- 
ject. Undoubtedly, one can find many other interesting variations which we 
omitted here. 
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4.1 The Power Set Variation 

Let P ( S )  denote the power set of the set S, and let P " ( S )  = P(S)M. 
Let N ( k )  be the smallest integer N .  so that for every set S with at least N ele- 

ments and every function f :  P " ( S )  + P " ( S )  satisfying f (A)  p A whenever 
IAl S I:. there exists B C S so that IBI = k a n d f ( D )  e P"(B) for every 
D E P " ( B ) .  

Theorem 4.1. 

ProoJ Let T be the set of ordered pairs (A,B)  such that IBI = k ,  B C S ,  
A Uf(A) C B .  (We assume IS1 = N = N ( k )  - 1 . )  Clearly, IT1 2 I{B C S ;  
IBI = k}l = (/). On the other hand, every A C B ,  IAl = j appears as a left ele- 
ment in at most (?I,'Ill) elements of T. Hence, we must have 

Now 

and the result follows. (See [6, p. 631). 

4.2 The Arithmetic Progression Variation 

Denote by A(n,  k )  the number of arithmetic progressions ( A . P )  of k integers in 
the interval [ 1, n] = N, .  

Denote by A(k)  the smallest integer t such that if f : N ,  + N,,,, m 3 t satis- 
fies for every x E N,,  f ( x )  # x ;  then there exists an A . P  of k integers B = 
(al, . . . .ak)  such that for every a, E B f ( a , )  4 B .  

Theorem 4.2. There exist positive constants cI and c2 such that 

Proof. We begin with the lower bound. Clearly, we have 



36 JOURNAL OF GRAPH THEORY 

[nlk- I I 

A ( n ,  k )  = C n - j ( k  - 1) 
j -  I 

The probability that a given A . P  of length k isf-free (in the obvious meaning) is 
exactly (1 - ( ( k  - I)/(n - l ) )k.  Hence, the expectation of thef-free A . P  of 
length k is A ( n ,  k ) ( l  - ( ( k  - l)/(n - l))k,  which is smiiller than one for suit- 
able constant C ,  > 0 and n = C,k'/log k ,  w.hich ~ T C X :  :!x lower bonnd. 

We now prove the upper bound. 
Assume, as usual, that 11 = A ( k )  - 1, and let T be the set of all ordered pairs 

( u , A )  where A is an A . P  of length k such that u E A andf(u) E A .  Certainly, 
we must have 

(n  - 2k + 2) * n 
IT1 2 A ( n ,  k )  3 ----. 

3(k - I )  

On the other hand, u andf(u) can appear at most in (!) A . P  of length k ,  accord- 
ing to the number of possibilities to choose ( i , j )  1 s i s j =s k such that 
u = a , , f ( u )  = aj.  (u  andf(u) are given, and ( i , j )  are just their position in the 
A . P . )  Hence, n(:) 2 (TI (ii). Combining (i) and (ii) we find that 

n S k 3  - 2k2  + 3k - 2 < k ' .  

However, we notice that for every choice of ( i , j )  such that u = a , ,  f ( u )  = a,, 
we must have 

Namely, Ii - jl is a divisor of la, - a,/, which depends on u only. 
A well-known result in number theory [2, p. 2941 states: & t i ) .  the number of 

divisor of n ,  satisfies d(n)  s nc2""g lag " for a suitable constant c2 (c2 = log 2 + 
E permitted). Since Ii - j l  can be obtained at most k - 1 times ( 1  s i < 
j S k ) ,  we infer that each integer u can appear in at most n . ( k  - l)k'"'"F 'oei 

elements of T .  Hence, after some algebra we find n s 2k2*'2"og"'eA . Q.E.D. 

Remark. It is easy to see that A ( 3 )  3 10, which is perhaps exact. 
We conclude this section with the following. 

Conjecture. A(k)  = C k 2  + O(k).  
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