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ABSTRACT

We consider extremal problems concerning transformations of the
edges of complete hypergraphs. We estimate the order of the largest
subhypergraph K such that for every edge e € E(K), fle) ¢ E{(K), assum-
ing fle) # e. Several extensions and variations of this problem are also
discussed here.

INTRODUCTION

In this paper we investigate some extremal problems concerning transforma-
tions of the n-subsets of a set. We begin with some technical definitions.

For a set S, let |S| denote its cardinality. For a graph G, let V(G) [respec-
tively, E(G)] denote the vertex set (respectively, edge set) of G, and let ¢(G) =
|E(G)|. Use 8(G) and A(G) to denote the minimum and maximum degree of
the vertices of G, respectively. For u € V(G), let deg u denote its degree. For
the complete graph on m vertices K,,, we sometimes use E,, for E(K,,). Let
IS|" denote the set of all n-subsets of S, and if |S| = p, write K} for [S]". The
complete g-partite graph with all color classes of size p is denoted by K, (p).
Finally, Aut G denotes the automorphism group of the graph G.

Let f:[S]" — [S]. The order of f is

d(f) = max v N f)].
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Let F(m,n,d) = {f:(S]"—> [SV'|d(f) = d, |S| = m}. For A C [S]", and
FAST — |S]", say that A is f-free if for all a € A, fta) ¢ A. Define

g(p.n.d) = max{m|there is f € F(m, n, d) with no copy of K, f-frec}.
(Note that g(p, n,d) is well defined for p = 2n — d.) Let
g(G,d) = max{m|there is f € F(m,2,d) with no copy of G f-free}.

and only consider cases where this cxists.
Define

H{m,n,d) = {f:EK,(m) — EK,(m))|d(f) =d € {0.1}},
and let
B(m,n,d) = max{t|there is f € H(t, n.d) with no copy of K,(m) f-free}.

In this paper we investigate the behavior of the functions g(p, n, d), g(G. d).
and B(m, n,d) in great gencrality.

We determine lower and upper bounds for each of those functions, and we
also obtain some exact results in some small cases.

Along this paper we make an intensive use of some versions of the cele-
brated Konig—Hall theorem. {See, c.g., |3, pp. 50-58].)

We also use implicitly the standard incqualities concerning () and
(1 — (m/n))'. (See, e.g., |3, p. 255].)

Motivation

The origin of the subject of set mappings can be traced back to 1930 when
some problems concerning set mappings and free sets. most of them coming
from topology and set 'theory, werc treated mostly by Polish and Hungarian
mathematicians.

The subject was dormant until 1958 when Erd6s and Hajnal published their
almost forgotten paper “On the Structure of Set Mappings™ [9].

In this fundamental work, they gave many results concerning the modifi-
cation of g(p, n.d) to the infinite case. They also gave some initial results on
g(p,n,d).

In the last few years, more work has been done. The book of Erdos er al.
{10] summarizes the known results on the infinite case. The work of Alon,
Caro, and Schonheim [1, 11, 12] shows that the finite case is no less interesting.

The first part of the current paper is devoted to both generalizing and
improving the results obtained so far by Alon and Caro [1] and Erdés and
Hajnal [9]. In the second and third parts we present some. further generali-
zations and variations of the original questions, both for their own interest and
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because they show that our methods have a wide range of applications. It is
also of interest to notice here that many classical theorems and methods of
graph theory such as the Kdnig—Hall theorem, the Erdés—Stone thcorem. the
Ramsey thcorem, and the Turan theorem, as well as counting methods and the
probabilistic method, have an elegant and efficient application in the frame of
set mappings.

1. THE FUNCTION g{p, n,d)

In this scction we obtain some general results concerning the function
g(p,n.d). Our first result is the following.

Theorem 1.1 (upper bound). Let g = g(p.n,d), p = 2n — d, n > d; then
forall r = p

n—d—-1

H("_j n—d—1
L l_[ (g —n—J). (L.n

r—p+ l)n s

Proof. Suppose f € F(g,n,d) is a function such that no copy of K, in K} is
f-free. Let T be the set of all ordered pairs (e, K) where K is a copy of K} in K&
and e is an edge of K} such that e, f(e) € E(K), e N f(e)| < d. Every copy K
of K7 appears in at least r — p + | elements of 7. Indeed, suppose this is false
and let K be a copy appearing in ¢ < r — pelements of T, (¢;,K), | < i< gq.
For each 1 < i < g, let v; € ¢;. Define V = V(K){v,,...,v,}. Clearly,
Vi=r-qg=p>n :

Let e € [V]" C [V(K)]" = E(K). Now, by the definition of V, f(e) ¢ E(K)
(for otherwise, e,f(E) € E(K), which implies e = ¢; for some 1 < j = ¢,
contradicting the fact that for | < j < ¢, ¢; ¢ [V]"). Therefore, every copy of
K} containing only vertices of V is f-free, contradicting the fact that there is
no such copy. Hence, we conclude that ]T| = (%)(r — p + 1). On the other
hand, if e is an edge of K; and (e,K) € T, then K contains all the vertices of

e and f(e). But |e U f(e)| = 2n — d, hence e appears in at most ({_3119) ele-

ments of T, and thus
g—2n+d
T
7l < (1><r—2n+d>

Combining the last two inequalities, we obtain (1.1).

Remark. For given p, n,d, the best bound is obtained by taking

=1
r = max{p, [p -2+ -2;8_——‘1—_——1]}
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Theorem 1.2 (lower bound). For every p = 2n — d, n > d, if g is a posi-
tive integer satisfying

<1, (1.2)

then g(p,n,d) = g.

Proof. LetT C F(g, n, d) be the set of all functions f'such that |f(e) N e] = d
for all ¢ € E(K?}). We consider T as a probability space whose elements have
equal probability. The probability that a given copy K of K is f-free is

= {(P-" g n ®
n—d n—d '
Therefore, the expected number of f-free copics of K, in K is just the left-hand

side of (1.2), which is smaller than 1. This shows that there exists an fE€ T
such that no copy of K, in K is f-free and establishes the theorem.

Remarks.
(1) An immediate consequence of Theorems 1.1 and 1.2 is that for a given
n,d,n > d, there exist constants ¢, = ¢,(n,d), ¢» = ¢,(n,d) such that

2n —d — |
t= —m4m8M8M—

c:(n,d)p'/log p < g(p,n,d)c\{n,d)p’, p—

hence limp_.(log g(p,n,d}/logp) = 2n —d — 1)/(n — d). (See, e.g.,
{3, p. 255}

(2) By an easy application of a theorem of Lovasz (sec [7, p. 79] we can
replace the factor (§) in (1.2) by the factor e((}) (,£,) + 1), which is better than
the lower bound (1.2) for n > d = 2 and p large. However, this improvement
is not strong enough to solve the following problem.

Problem 1. Does there exist a constant c(n, d) such that g(p, n,d) = c(n,d) -
P-+01),t=0C2n—d—- 1)/(n—4an
Our last result in this section is the following.

Theorem 1.3. letn =k = 1, then

gn + k,non—k)=2n+k. (1.3)
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Proof. Takingr=p, g=2n+k,d=n— kin (1.1), we find that
gn+ k,n,n — k) <2n + k. Assume |S| = 2n + k, then, of course,
(ntk (2,',’+kk). A simple application of the theorem of Hall and Kénig (see
[8, p. 85]) shows that there is a bijection h:[S]" — [S]"** such that v C h(v)
for all v € [S]". It is trivial to show that there is a function ¢:[S]" —
[S]"™* such that g(v) C v for all v € [S]". (if n — k = 0, put g(v) = ). De-
fine the function f:[S]" — [S]" as follows:

flv) = q(v) U {h(v)\w}.

It is easy to see that no copy of K, in K5,., 1s f-free.

2. THE FUNCTION g(G, d)

In this section we give some results concerning the function g(G, d). We only
outline the proofs of the results, which are straightforward generalizations of
those of Section 1. Our first result is the following.

Theorem 2.1 (lower bound). Let G be a graph. ¢ = |[E(G)|, p = |V(G)|.
Denote by /(G ) the number of copies of G in K,. For every edge e € E(G)
define d(¢) = deg u + deg v — 2 where e = (u,v).

If g is a positive integer satisfying

B dle;)
h(G) (p) 11( 55 = 4) 1, 2.1
then g(G,1) = g

If g is a positive integer satisfying

g\ _(I—d(ej)—l
G)(p)/[[l 1 —<g _2) <1, (2.2)

2
then g(G,0) =

Proof. LetT C F(g,2, (&) N
e| = 1 for all e € E(K,). Clearly, f(e) has 2g — 4 possibilities in K,, and if
we consider a given copy of G in K, containing e, there are d(e) possibilities
that f(e) € E(G). Hence, the probability that a given copy of G is f-free is
[TL.(1 — ((d(e;))/(2g — 4))). Thercfore, the expected number of f-free copies
of G in K, is the left-hand side of (2.1), and the result follows. The case d = 0
can be provcd along the same line with trivial modifications.
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Remark. Obviously, &/(G) = p!/|Aut G| wherc Aut G is the group of the
automorphisms of G. In order to present an upper bound. we need some
more definitions. Let G be a graph so that p = |V(G)|, r = p. Define
G, = G + K,_, (where + is the join operation). Definc i(G, r) as the number
of copies of GG in K,. Define h(G, r) as the number of copies of G in K, con-
taining a fixed copy of K, . Define A:(G, r) as the number of copies of G in X,
containing a fixed copy of 2K,.

Theorem 2.2 (upper bound). If g = g(G, 1). then for all r = P,
P = |V(G).

(‘;) - max{h,(G,,8). h(G,.g)} = h(G,,e)(r — P + 1). (2.3)

If ¢ = g(G,0), then for all r = P,

(i)hz(Gng) = h(G,,g)(r —P + 1), (2.4)

Remark. It is important to notice that if H is any induced subgraph of G, on
P vertices, then G C H, and this is a crucial point in the proof.

" Proof. We prove only the first part. The second part is similar. Suppose
f € F(g,2, 1) is a function such that no copy of G in K, is f-free. Let T be the
set of all ordered pairs (e, K') where K is a copy of G, in K, and ¢ is an edge of
K, such that e,f(e) € E(K), |e N f(e)| =< 1. Every copy K of G, appears in at
least r — P + | elements of 7. Indeed. supposc this is false, and let K be a
copy appearing in ¢ < r — P clements of T, (¢,,K), | =i =< . For each
1< <1t letv, € e beavertex, and define V = V(K Nuv,, -+ - ,v,}. Clearly,
[Vl=r —t =P Lete € [V]) N E(K) be an edge. By the definition
of V,f(e) ¢ E(K). Therefore (recall the remark above), every copy of G con-
taining only edges of [VE N EKK) is f-free, a contradiction. Hence, we
conclude that

IT| = h(G,.g)(r — P + 1).

On the other hand, if ¢ is an edge of K, and (e, K) € T, then K contains both
e and f(e). Clcarly, e and f(e) can appcar in two forms, as K, » (i.e.,
fley Ne # @) or as 2K, (i.e.. f(e) N e = ). hence, ¢ appears in at most max
{h(G,,g), hy(G,, g)} elements of 7, and thus |T| < (§) max{h,(G,.g), h-(G,, g)}.
Combining the last two inequalities, we obtain (2.3).
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Remarks.

(1) Clearly, h(G,,g) = g!/(g — r)!|Aut G,|. However, if in G, A(G) <
P — 2, then |Aut G,| = |Aut G|(r — P)!, which simplifies (2.3).

(2) Theorem 2.2 is useful for small graphs. For example, taking g = 5,
r = 4 in Theorem 2.2 gives the bounds g(P,,0) < 4, g(P,, 1) < 4. (P, is the
path on four vertices.) Define a function f:E(K,) = E(K,) as follows:
f(1,2) = (3,4), f(2,3) = (1,4), f(1,3) = (2,4); then we conclude that
g(Ps,0) = g(Ps, 1) = 4.

3. THE FUNCTION B(m,n, d)

In this section we obtain some general results concerning the function
B(m,n,d). We also prove some exact results, and we present an application of
this function to estimate the correlation between /(m, H) and ex(m, H) (whose

definitions are given later). Our first result is the following.

Theorem 3.1 (lower bound). If 7 is a positive integer satisfying

P\ 2n = Dm = 2\
|- S—2—2) < 1.
<m)< 2(n—1)1—2> a G-

then B(m,n, 1) = 1.

If 1 is a positive integer satistying

2
$im?

Y <;>m2 —2n — Ihm + 1
< ) I = <1 (3.1.2)
" (:)12 - 2n — Dr + 1

then B(m, n, Q) = .

Proof. The proof is a simple modification of the proof of Theorems 1.2
and 2.1, and we omit the details.

Theorem 3.2 (upper bound).

rr =1
Ifrz=m=2, then Bm2, 1) s —— + 1|. 3.2,
(m ) 2r —m) + 1 ¢ D
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rir = 1)
Q2 —m) + D"

AN
) 1
$ —_—

Ifr=m=2, then B(m,2,0) =< +1. (3.2.2)

Ifr=zm=1,n=3, th B{m,n, 1 - . 3.2.3
n en B(m,n,1) - T ( )
3 "2
I+ (—_2(12r r )13)1 + 1)
Ifr=m=2, then B(m, 3,0) < d '; )
(3.2.4)
Gl
"\2
Ifrzm=I1,n=4, then B(m,n.,0) < (3.2.5)

Qr —my+ D"

Proof. We give a detailed proof of (3.2.3) as a typical case. The proof is a
modification of the proof of Theorem 1.1.

Let t = B(m,n, 1) and assume the condition of (3.2.3). Suppose
f € H(t.n, 1) is a function such that no copy of K, (m) in K, (¢} is f-frce. Let T
be the set of all ordered pairs (e, K) where K is a copy of K, (r) in K,(¢) and e
is an edge of K, (¢) such that e, f(e) € E(K).

Claim. Every copy K of K,(r) appears in at least 2(r — m) + | elements
of T.

Indeed, suppose this false, and let K be a copy appearing in ¢ < 2(r — m)
elements of T, (¢,,K), | =i = 4.

For each | =/ =< ¢, let v; € ¢; be a vertex, but such that no more than
r — m vertices belong to the samc color class in K,(r). Define V =
VIKNvy, -+, v,}. Clearly, V| =Zn-r—g=nr = 20r —m)=(n —2)-
(r — m) + nm, and by the definition of V, each color class of V has at least
m vertices.

Let ¢ be an edge of the graph induced by V. Then (like in Theorem 1.1)
f(e) ¢ E(V). Therefore, every copy of K,(m) in V is f-free, a contradiction
which proves our claim. So we conclude that

7| = (;)n(Z(r —m o+ 1), (1)

On the other hand, a simple convexity argument shows that each edge e can

appear in T at most
t"3_ r—1\°
r r—1

times as a left member of T,
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Hence, we obtain

n 21""“_t—13>
Gy

Combining (1) and (2) and after some algebra we obtain (3.2.3). Q.E.D.

Remark. In all cases of the theorem, the set T is defined and the incqualities
are obtained in two steps.

Step A. Give a lower bound for T it is what the claim does and it works in
all the different cases.

Step B. Give an upper bound for 7, by counting the maximum number of
times an edge can appear in 7. For this step it is necessary to distinguish
between the different cases.
3.1 The Function /im, H)

For m > 2, define

m.H) = max{t| 3f E, —> E,fle) # ¢ for t edgesofE, and
no copy of H in K, is f-free}.
The Turan numbers ex(m,H) = max{t| 3 G.e(G) = =mH ¢ G}.

We use Theorem 3.2 together with a theorem of Erdds—Stone to strengthen
Theorem 5.4 of [1].

Theorem 3.3. Let H be a graph. x(H) = k = 3, |H; = P, and put r =
P — k + 1. There exists a constant b, > 0 (depending only on k) such that
< l(]n,H) - l\ - ] ,_bk/,]'

N

Proof. The left-hand side can be found in [1]. Clearly, the largest color
class of H contains at most r vertices, r = P — k + 1. Hence, H C K, (r).
Let G(m, n) be a graph on m vertices and n edges such that n > (m*/2)
(1 =(1/(k — 1)) + ). (1/k) > & > 0. By an improved version of the Erdos—
Stone theorem (see, e.g., [3. p. 328]), G contains a K, (1), (i) ¢ = (o log m)/
(k log 1/e) (a is a constant depending only on k). We choose (ii) 1 = C, - r*,
so that for every function f:E(G) — E(G) there exist K, (C,r°) such that
fle) # e for every edge e of K.(Cr?). By Theorem 3.2 we conclude that G
contains a K, (r)-f-free graph, and hence an H-f-free. Eliminating & from (i),
(ii), we get the final result. Q.E.D.
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Remark. Observe that instead of working with H, whose structure is
unknown, we are working with K,(r) and H C K,(r). Moreover, the choice of
= ¢,r’ is justified by Theorem 3.2, case (3.2.3).
As a simple application of Theorem 3.3, we prove the following.

Theorem 3.4. Denote by P(m, G) the probability that a random function
f:E(K,)— E(K,) contains a G-f-free. (G is a fixed graph.) Then

'!’i_rgP(m,G) =1.

Proof. Let P(m,n) denote the probability that a random function
f:E(K,) — E(K,) has at least n edges e; such that f(e;) N ¢; # . We first
prove that lim,_.P(m, 11m) = 0. Indeed, the number of functions
fE(K,) — E(K,) with exactly k edges e, such that f(e;) N ¢; # J is given by

m - (’i’)_k
(i (?) (m ) 2) - (@2m - 3

Hence, the number of functions having at least 2¢(2m — 3) edges e, such that

f(e,') N e = @ is

g (@y(m -2 T o 3y
g=2eizm -1 \ K 2 -
@ ok
() 8 (sen2)
2 k=2e(2m-3) k

6] €3]
my - _ _ my - _ .
< <2> 21 2ei2m—3) < (7) 2 10m (m = 20) ]

Now 2e(2m — 3) < 1lm; hence, for m = 20, P(m, l1m) < 27" which is
stronger than our original claim. The probability that a random function has
at least () — llm edges e;, f(e;)) N ¢; = &, is therefore at least 1 — 27'*"
(m = 20).

Now Theorem 3.3 implies that for m
has a G-f-free, and we proved that for m

. Q.E.D.

mo, (3) — 1lm > I(m, G); hence, f
my, P(m!G) =1- P(m, llm)—)

=
=

4. VARIATIONS

In this final section, we consider only two major variations of the main sub-
ject. Undoubtedly, one can find many other interesting variations which we
omitted here.
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4.1 The Power Set Variation
Let P(S) denote the power set of the set §, and let P*(S) = P(S)\J.

Let N(k) be the smallest integer N, so that for every set S with at least N ele-
ments and every function f: P%(S) — P°(S) satisfying f(A) € A whenever
|Al < k. there exists B C S so that |B| = k and f(D) ¢ P*(B) for cvery
D € P%(B).

Theorem 4.1.
NK) < k- 27" + k.

Proof. Let T be the set of ordered pairs (A, B) such that |[B| = k, B C S,
A U f(A) C B. (We assume IS| = N = N(k) — 1.) Clearly, |T| = {B C S;

IB| = k}| = (}Y). On the other hand, every A C B, |A| = j appears as a left ele-
ment in at most (}_/~/) elements of 7. Hence, we must have

LIINVIN = =1y N
=T = i
%(1)<k—j—1> . (k)
Now

DI EbF S [l

N e (N
N—k+1 k—1)

and the result follows. (See [6, p. 63]).

4.2 The Arithmetic Progression Variation

Denote by A(n, k) the number of arithmetic progressions (A.P) of k integers in
the interval [1,n] = N,.

Denote by A(k) the smallest integer ¢ such that if f:N,, — N,, m = 1 satis-
fies for every x € N,,, f(x) # x; then there exists an A.P of k integers B =
(ai,...,ay) such that for every a; € B f(a;) ¢ B.

Theorem 4.2. There exist positive constants ¢, and ¢, such that

cik?/log k < A(k) < 2k>Tvls ek,

Proof. We begin with the lower bound. Clearly, we have
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{nk—=1]
Aln k) = 3 n—jlk =1

j-1

el ) e

k—1 2

The probability that a given A.P of length & is f-free (in the obvious meaning) is
. exactly (1 ~ ((k — 1)/(n — ). Hence, the expectation of the f-free A.P of
length k is A(n, k) (1 — ((k — 1)/(n — 1))*, which is smaller than one for suit-
able constant C; > 0 and n = C,kz/log k, which proves the lower bound.

We now prove the upper bound.

Assume, as usual, that n = A(k) — 1, and let T be the set of all ordered pairs
(v,A) where A is an A.P of length k such that v € A and f(v) € A. Certainly,
we must have

(n ~2k+2)n

IT| = A(n, k) = T

)

On the other hand, v and f(v) can appear at most in & A.Pof length &, accord-
ing to the number of possibilities to choose (i,j) 1 =< i < j < k such that
v = g, f(v) = a;. (v and f(v) are given, and (7, /) are just their position in the
A.P.) Hence, n(3) = |T| (ii). Combining (i) and (ii) we find that

n<k®—2k*+ 3k —-2<k.

However, we notice that for every choice of (i,)) such that v = a,, f(v) = q,,
we must have

i —=jl{la = al <&

Namely, |i — j| is a divisor of |a, — a,|, which depends on v only.

A well-known result in number theory [2, p. 294] states: d(n), the number of
divisor of n, satisfies d(n) < n?"*#'®”" for a suitable constant ¢, (¢ = log 2 +
e permitted). Since |i — j| can be obtained at most k — 1 times (1 </ <
j < k), we infer that each integer v can appear in at most n - (k — 1)k “F
elements of T. Hence, after some algebra we find n < 2k Q.E.D.

Remark. It is easy to see that A(3) = 10, which is perhaps exact.
We conclude this section with the following.

Conjecture. A(k) = Ck* + 0(k).
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